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Abstract

Following previous work on computing approximate frequency response functions for the Duffing
oscillator under white Gaussian excitation, an approximation is obtained here for the coherence function.
A Padé approximation of order (1,1) is made for the asymmetric Duffing oscillator (i.e. with non-zero
quadratic term), and an approximation of order (2,2) is made for the symmetric (no quadratic term)
oscillator. The analytical results are shown to give excellent qualitative agreement with numerical
simulation. However, in quantitative terms, the approximations underpredict the coherence distortion as is
consistent with the low-order truncations of the Volterra series.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

This paper forms the latest in a series which attempts to form analytical approximations to
structural dynamic observables using the Volterra functional series. In the first two [1,2],
approximations to the nonlinear composite frequency response function (FRF) were obtained for
a symmetric and asymmetric Duffing oscillator and a two degree-of-freedom (dof) system with a
cubic stiffness nonlinearity, respectively. The approximations, which were obtained for the specific
case of white Gaussian excitation, reproduced the correct qualitative behaviour of the FRFs as
see front matter r 2004 Elsevier Ltd. All rights reserved.

jsv.2004.10.028

ding author. Tel.: +44 114 222 7758; fax: +44 114 222 7890.

ress: k.worden@sheffield.ac.uk (K. Worden).

www.elsevier.com/locate/jsvi


ARTICLE IN PRESS

Nomenclature

FRF frequency response function
HFRF higher-order FRF
sdof single degree-of-freedom
E½ � expectation operator
HðoÞ linear FRF
Hnðo1; . . . ;onÞ nth-order Volterra kernel trans-

form
P power-spectral density
SuuðoÞ auto-power spectrum of uðtÞ
SuvðoÞ cross-power spectrum between

uðtÞ and vðtÞ
hðtÞ linear impulse response
hnðt1; . . . ; tnÞ nth-order Volterra kernel
k2; k3 quadratic and cubic stiffness para-

meters
m, c, k linear system parameters (mass,

damping, stiffness)
t, t time

t0 normalised time
xðtÞ excitation
yðtÞ displacement response of system
ynðtÞ nth-order component of response
LrðoÞ composite FRF of nonlinear sys-

tem
g coherence
gði; jÞ ði; jÞ-order Padé approximation to

the coherence
dðoÞ Dirac delta function
fuuðtÞ auto-correlation function of uðtÞ
fuvðtÞ cross-correlation function between

uðtÞ and vðtÞ
o circular frequency
od damped natural frequency
on undamped natural frequency
z damping ratio

Superscript stars denote complex
conjugation.
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the level of excitation increased, i.e. in the single-dof (sdof) case, the ‘resonance’ peak in the FRF
shifted upwards in frequency and downwards in amplitude as the level of forcing increased. The
motivation for the calculations is the need to understand if the Volterra series is applicable to
structural dynamics at realistic levels of forcing. That the levels of excitation applied in Refs. [1,2]
are realistic follows from the fact that the frequency shifts observed from the calculations are
consistent with those seen in experiments.
Another interesting feature of the calculations was the suggestion that all the FRF poles,

including poles generated at multiples of the linear system poles, were in the upper half of the
complex plane. This contrasts directly with low-order approximations for the FRF under
sinusoidal excitation and goes some way to explaining why the Hilbert transform test for
nonlinear systems fails for random excitation, yet works well for stepped-sine forcing.
The current paper extends the previous calculations by computing an approximation to the

coherence for the asymmetric and symmetric Duffing oscillators. Unlike the previous
calculations that were polynomial in P, the power of the white Gaussian excitation, the
new calculation is necessarily a rational or Padé approximation and thus a little more
complicated. It could be argued that the calculations have only academic interest, given the
uncertainty which surrounds the application of the Volterra series. However, as the levels of
excitation used here produce frequency shifts which are consistent with experiment and the
convergence of the series is established at these levels [1], the authors feel that the analysis
does make contact with reality. The authors also feel that analytical results always contribute
some insight and there is the possibility of using the functional forms obtained by the route shown
here for nonlinear system identification if the excitation is appropriately low (but also high
enough to excite the nonlinearity of course).
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The layout of the paper is as follows. Section 2 reviews the necessary background on the
Volterra series in general, and in the particular case of the sdof Duffing oscillator. Section 3
discusses how the Padé approximations are formed from the various cross-spectra involved.
Sections 4 and 5 construct the approximations in the asymmetric and symmetric cases of the
Duffing oscillator, respectively. The paper concludes with some discussion in Section 6.
2. FRFs and cross-spectra

The coherence for a linear system is constructed as the ratio of certain cross-spectra and auto-
spectra, or alternatively in terms of the FRF and the auto-spectra. Before proceeding to the
construction of the coherence function for a nonlinear system in terms of a Volterra series
expansion, it is useful to recall the definitions of the FRFs and cross-spectra for such systems in
terms of the Volterra series.
It is well-known that many nonlinear systems or input–output processes xðtÞ�!yðtÞ can be

realised as a mapping [3,4],

yðtÞ ¼ y1ðtÞ þ y2ðtÞ þ y3ðtÞ þ 
 
 
 þ ynðtÞ þ 
 
 
 ; (1)

where

ynðtÞ ¼

Z þ1

�1


 
 


Z þ1

�1

dt1 . . .dtn hnðt1; . . . ; tnÞxðt � t1Þ . . .xðt � tnÞ: (2)

Among the conditions for such a series to apply are time-invariance of the system of interest and
polynomial nature for the nonlinearity.
This is the Volterra series and the functions hn are the Volterra kernels. The dual frequency-

domain representation is based on the higher-order FRFs (HFRFs) or Volterra kernel transforms,
Hnðo1; . . . ;onÞ; n ¼ 1; . . . ;1; which are defined as the multi-dimensional Fourier transforms of
the kernels.

Hnðo1; . . . ;onÞ ¼

Z þ1

�1


 
 


Z þ1

�1

dt1 . . .dtn hnðt1; . . . ; tnÞe
�iðo1t1þ


þontnÞ: (3)

The definition of the FRF of a linear system based on the input/output cross-spectrum, SyxðoÞ;
and input autospectrum, SxxðoÞ; is also well-known,

HðoÞ ¼ H1ðoÞ ¼
SyxðoÞ
SxxðoÞ

; (4)

where the spectral quantities are defined as expectations i.e. SyxðoÞ ¼ E½Y ðoÞX ðoÞ�: The
expectations are obtained by averaging discrete or fast Fourier transforms from neighbouring
time segments.
The composite FRF LrðoÞ; of a nonlinear system under random excitation, is defined similarly,

LrðoÞ ¼
SyxðoÞ
SxxðoÞ

: (5)
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Using the Volterra series representation in (1) results in the expression

LrðoÞ ¼
Sy1xðoÞ þ Sy2xðoÞ þ 
 
 
 þ SynxðoÞ þ 
 
 


SxxðoÞ
: (6)

LrðoÞ was approximated in Ref. [1] by obtaining expressions for the various cross-spectra between
the input and the individual output components. The general term used was

Sy2n�1xðoÞ ¼
ð2nÞ!SxxðoÞ

n!2nð2pÞn�1

Z þ1

�1


 
 


Z þ1

�1

do1 . . .don�1

�H2n�1ðo1;�o1; . . . ;on�1;�on�1;oÞSxxðo1Þ . . .Sxxðon�1Þ: ð7Þ

Now, given that the input autospectrum is constant over all frequencies for a white noise input
(i.e. SxxðoÞ ¼ P), the composite FRF for random excitation follows. Substituting the constant Sxx

into (7) gives

LrðoÞ ¼
Xn¼1

n¼1

ð2nÞ!Pn�1

n!2nð2pÞn�1

�

Z þ1

�1


 
 


Z þ1

�1

do1 . . . don�1 H2n�1ðo1;�o1; . . . ;on�1;�on�1;oÞ: ð8Þ

The system of interest here is going to be the basic asymmetrical Duffing oscillator with equation
of motion,

m €y þ c _y þ ky þ k2y
2 þ k3y

3 ¼ xðtÞ; (9)

where m is the mass and c is the damping constant. k, k2 and k3 are the linear, quadratic and cubic
stiffnesses, respectively. This system is time-invariant as required for the application of the
Volterra series.
Note that this system can be unstable at high levels of excitation in the cases where k3p0:

In the analysis here where k3a0 it is always positive and this ensures stability. For the case
when k3 is set to zero, the excitation level used here is not high enough to induce
instability. Setting k3 to zero here is purely a device to simplify the analysis, in practice
it would be assumed that the asymmetric oscillator always has a higher-order odd term to ensure
stability.
The relevant higher-order FRFs of this system for the forthcoming analysis are

H1ðoÞ ¼
1

�mo2 þ icoþ k
; (10)

H2ðo1;o2Þ ¼ �k2H1ðo1ÞH1ðo2ÞH1ðo1 þ o2Þ; (11)

H3ðo1;o2;o3Þ ¼ H1ðo1ÞH1ðo2ÞH1ðo3ÞH1ðo1 þ o2 þ o3Þ

�
2

3
k2
2ðH1ðo1 þ o2Þ þ H1ðo2 þ o3Þ þ H1ðo3 þ o1ÞÞ � k3

� �
ð12Þ
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for the asymmetric case when (k2a0), and

H5ðo1;o2;o3;o4;o5Þ

¼
3

10
k2
3H1ðo1 þ o2 þ o3 þ o4 þ o5ÞH1ðo1ÞH1ðo2ÞH1ðo3ÞH1ðo4ÞH1ðo5Þ

�fH1ðo1 þ o2 þ o3Þ þ H1ðo1 þ o2 þ o4Þ þ H1ðo1 þ o2 þ o5Þ

þ H1ðo1 þ o3 þ o4Þ þ H1ðo1 þ o3 þ o5Þ

þ H1ðo1 þ o4 þ o5Þ þ H1ðo2 þ o3 þ o4Þ þ H1ðo2 þ o3 þ o5Þ

þ H1ðo2 þ o4 þ o5Þ þ H1ðo3 þ o4 þ o5Þg ð13Þ

for the situation with k2 ¼ 0:
The assumption throughout is that the appropriate auto- and cross-spectra are well-defined. In

fact, the theoretical white noise signal applied here is not physical as it has infinite variance
(power). This does not matter in practice as any measured signal will always have finite power.
The assumption of whiteness does not invalidate the analysis as it is largely valid as long as the
real bandwidth of the input signal is wide enough to cover the natural frequency of the sdof
system and any significant superharmonics [5].
3. Padé approximations for the coherence

The well-known expression for the coherence of a linear system is

g2ðoÞ ¼
SyxðoÞSxyðoÞ
SxxðoÞSyyðoÞ

¼
jHðoÞj2SxxðoÞ

SyyðoÞ
; (14)

where the interpretation is that the coherence is the ratio of the power in the output linearly
correlated with the measured input divided by the power in the output. For a linear system, one
expects this ratio to be unity. It is a textbook calculation [6], to show that the coherence is always
less than unity if measurement noise is present on the input or output. It is also well-known that
the coherence falls below unity if the system in question is nonlinear, although this belief is
considerably less well-supported theoretically.
It is worth noting that the coherence is not infallible and it is possible to observe

erroneous high coherence [7]. However, it can only occur in the case where multiple
inputs to the system are present—which is not the case here. Even in the case of multiple
correlated inputs, progress is possible by computing the partial coherences, however this is not
pursued here.
Assuming that the coherence is computed from the auto and cross-spectra as in the linear case,

the expression in the nonlinear case is simply

g2ðoÞ ¼
SyxðoÞSxyðoÞ
SxxðoÞSyyðoÞ

¼
jLrðoÞj2SxxðoÞ

SyyðoÞ
(15)
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with reference to Eq. (14). In terms of the individual Volterra components of the signal y, this
becomes,

g2ðoÞ ¼
ðSy1xðoÞ þ Sy3xðoÞ þ Sy5xðoÞ þ 
 
 
ÞðSxy1ðoÞ þ Sxy3ðoÞ þ Sxy5ðoÞ þ 
 
 
Þ

SxxðoÞðSy1y1ðoÞ þ Sy1y3ðoÞ þ Sy3y1ðoÞ þ Sy2y2 þ 
 
 
Þ
(16)

and this expression takes into account the fact that terms of the form SynxðoÞ can be shown to
vanish identically when n is even as do terms Symyn

ðoÞ where m þ n is odd.
In terms of the dependence on the input level P, (with a slight abuse of notation) this looks like,

g2ðoÞ ¼
ðOðPÞ þOðP2Þ þOðP3Þ þ 
 
 
ÞðOðPÞ þOðP2Þ þOðP3Þ þ 
 
 
Þ

PðOðPÞ þOðP2Þ þOðP2Þ þOðP3Þ þ 
 
 
Þ
(17)

so both the numerator and denominator are expanded in powers of P. This means that an
approximation to the coherence will have the general Padé form

g2ðm;nÞ ¼

Pm
i¼0 aiP

iPn
i¼0 biP

i
; (18)

where m and n are the orders of approximation of the numerator and denominator, respectively.
For the purposes of this paper we will take m ¼ n:
To order (0,0), the expression for the coherence is

g2ð0;0ÞðoÞ ¼
Sy1xðoÞSxy1ðoÞ

PSy1y1ðoÞ
¼

PSy1y1ðoÞ
PSy1y1ðoÞ

¼ 1 (19)

on using the first lemma of Appendix A. This shows that to this order the coherence is unaffected
by the nonlinearity. To order (1,1), one obtains from Eq. (18) (suppressing the argument o)

g2ð1;1Þ ¼
Sy1xSxy1 þ Sy1xSxy3 þ Sy3xSxy1

PðSy1y1 þ Sy1y3 þ Sy3y1 þ Sy2y2Þ
¼

Sy1xSxy1 þ 2Re Sy1xSxy3

PðSy1y1 þ 2Re Sy1y3 þ Sy2y2Þ
(20)

and using the first lemma, from Appendix A, this becomes

g2ð1;1Þ ¼
Sy1xSxy1 þ 2Re Sy1xSxy3

Sy1xSxy1 þ 2Re Sy1xSxy3 þ PSy2y2

¼
A11

A11 þ B11
; (21)

where

A11 ¼ Sy1xSxy1 þ 2Re Sy1xSxy3 (22)

and

B11 ¼ PSy2y2 : (23)

One can immediately observe that if the Duffing oscillator is symmetric and k2 ¼ 0; then y2 ¼ 0;
Sy2y2 ¼ B11 ¼ 0 and the expression for the coherence to this order collapses to g2ð1;1Þ ¼ 1: So for the
symmetric system, the coherence is still insensitive to the nonlinearity to this order. If the
oscillator is asymmetric, one would expect some distortion to occur and this is shown in the next
section. In the symmetric case, higher-order approximations are required. The (2,2)
Padé approximation will be considered next, but to simplify matters the symmetric case
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will be assumed.

g2ð2;2Þ ¼
Sy1xSxy1 þ Sy3xSxy3 þ 2Re Sy1xSxy3 þ 2Re Sy1xSxy5

PðSy1y1 þ Sy1y3 þ Sy3y1 þ Sy3y3 þ Sy1y5 þ Sy5y1Þ
: (24)

A little rearrangement using Lemma 1 from Appendix A gives

g2ð2;2Þ ¼
jSy1xj

2 þ jSy3xj
2 þ 2Re Sy1xSxy3 þ 2Re Sy1xSxy5

jSy1xj
2 þ 2Re Sy1xSxy3 þ 2Re Sy1xSxy5 þ PSy3y3

(25)

and using (A.33), one obtains

g2ð2;2Þ ¼
A22

A22 þ B22
; (26)

where

A22 ¼ jSy1xj
2 þ jSy3xj

2 þ 2Re Sy1xSxy3 þ 2Re Sy1xSxy5 (27)

and

B22 ¼
6P4

ð2pÞ2

Z 1

�1

Z 1

�1

do1 do2jH3ðo1;o1;�o� o1 � o2Þj
2: (28)

This shows that to (2,2) order, the coherence for the symmetric Duffing oscillator finally shows
some sensitivity to the nonlinearity.
In the next two sections, the preceding equations will be used to compute the (1,1)

and (2,2) Padé approximations for the asymmetrical and symmetrical Duffing oscillators,
respectively.
4. The asymmetric oscillator—an approximation of order (1,1)

This section computes the coherence g2ð1;1Þ for the asymmetric Duffing oscillator, i.e.
that given by Eq. (9). This amounts to calculating the terms A11 and B11 from Eqs. (22)
and (23).
In order to obtain A11; it is necessary to calculate the quantities Sy1x and Sy3x (note that these

are the complex conjugates of Sxy1 and Sxy3 ; respectively). The first is simple and is given in Ref.
[1] as PH1ðoÞ: The second is also computed in Ref. [1], but only for the simpler k2 ¼ 0 case, a little
more work is needed when k2a0: First, from Ref. [1],

Sy3xðoÞ ¼
3P2

2p

Z 1

�1

do1 H3ðo1;�o1;oÞ (29)

and from Eq. (12) of this paper,

H3ðo1;�o1;oÞ ¼ H1ðoÞ
2
jH1ðo1Þj

2 2

3
k2
2ðH1ð0Þ þ H1ðoþ o1Þ þ H1ðo� o1ÞÞ � k3

� �
: (30)
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Now H1ð0Þ ¼ 1=k; and the terms with H1ðoþ o1Þ and H1ðo� o1Þ can be shown to give the same
value when integrated as in (29). This gives

Sy3xðoÞ ¼
3P2

2p
2

3

k2
2

k
� k3

� �
H1ðoÞ

2

Z 1

�1

do1 jH1ðo1Þj
2

þ
2P2k2

2

p

Z 1

�1

do1 jH1ðo1Þj
2H1ðo� o1Þ: ð31Þ

The first integral is standard in structural dynamics [1]. The second is a little more complicated but
is readily evaluated by using the calculus of residues. (The computations are rather intensive and
have been carried out here with the help of Mathematica.) The final result is

Sy3xðoÞ ¼
3P2

2ck

2

3

k2
2

k
� k3

� �
H1ðoÞ

2
þ 2P2k2

2H1ðoÞ
2I1ðoÞ; (32)

where,

I1ðoÞ ¼
�ðo� 4ionzÞ

mckðo� 2ionzÞðo� 2od � 2ionzÞðoþ 2od � 2ionzÞ
: (33)

So, substituting into (22) gives,

A11 ¼ P2jHðoÞj2 1þ
3P

ck

2

3

k2
2

k
� k3

� �
Re H1ðoÞ þ 4Pk2

2 ReðH1ðoÞI1ðoÞÞ
� �

: (34)

In order to complete the approximation for the coherence, it is necessary to evaluate B11 ¼

PSy2y2ðoÞ (Eq. (21)). This involves essentially the same manipulations as used in Appendix A and
in Ref. [1] so the detailed analysis will not be given here. The result in the general case is

B11 ¼
P3

2p

Z 1

�1

do1 H2ðo1;�o1Þ

� �2

dðoÞ þ 2

Z 1

�1

do1 jH2ðo1;o� o1Þj
2

( )
: (35)

Using Eq. (11) for the asymmetric Duffing oscillator gives

B11 ¼
P3

2p
�

k2

k

Z 1

�1

do1 jH1ðo1Þj
2

� �2

dðoÞ

(

þ 2k2
2jH1ðoÞj2

Z 1

�1

do1 jH1ðo1Þj
2jH1ðo� o1Þj

2

�
; ð36Þ

where dðoÞ is the Dirac delta function. (Note that it is an abuse of notation to have this function
appearing outside of an integral. It is used here to show that the first integral only affects the dc
component of B11:)
The first integral is the familiar standard, and the second is again obtained by using the calculus

of residues. The result is

B11 ¼ P3k2
2

p

2c2k4
dðoÞ þ jH1ðoÞj2I2ðoÞ

� �
; (37)
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where

I2ðoÞ ¼
2ðo2 þ 4o2

d þ 20o2
nz

2
Þ

m2ckðo2 þ 4o2
nz

2
Þð½oþ 2od �

2 þ 4o2
nz

2
Þð½o� 2od �

2 þ 4o2
nz

2
Þ
: (38)

As A11 and B11 are now available, it is straightforward to compute the Padé (1,1) approximation
to the coherence using Eq. (21). The formula was embedded in Fortran code and the
approximations for the values P ¼ 0:005; 0.01 and 0.02 were used as in Ref. [1] to generate
Fig. 1 for g21;1: Unlike the situation in Ref. [1] for the symmetric Duffing oscillator, there
is no readily available expression for the radius of convergence of the Volterra series in the
asymmetric case so the convergence of the Volterra series for the higher values of P are not
necessarily assured, A large effect is evident because of the high value of the k2 coefficient—the
values used for the simulation here were m ¼ 1; c ¼ 20; k ¼ 104; k2 ¼ 107 and k3 ¼ 5� 109:
These values give an undamped natural frequency on of 100 rad/s and a damping ratio
of 0.1 (10% of critical damping). With the parameters chosen, this figure shows
excellent agreement with the coherence shown in Fig. 8 of Ref. [8]. This agreement is very
encouraging as the figure in question represents the coherence for a simulated rotor
with a breathing crack. The crack induces a bilinear nonlinearity which has a dominant even
component which to a first approximation can be represented by the asymmetric Duffing
oscillator. The slight distortion around the natural frequency for P ¼ 0:01 is not evident in the
simulation from Ref. [8] and probably arises from a higher relative contribution from k and k3 in
the current analysis.
The dips in the coherence occur when the ratio B11=A11 is greatest. Clearly this will occur at the

poles of B11 and the zeros of A11: Leaving aside the latter quantities as they are not
straightforward to obtain analytically, the poles of B11 occur in the vicinity of o ¼ 0 and o ¼ 2od

according to Eq. (38). This explains the main behaviour observed in Fig. 1.
In order to see what degree of FRF distortion this corresponds to, the OðPÞ approximation to

LrðoÞ is plotted in Fig. 2. This is

LrðoÞ ¼ H1ðoÞ þ
3P

2ck

2k2
2

3k
� k3

� �
H1ðoÞ

2
� 2Pk2

2H1ðoÞ
2I1ðoÞ; (39)

where I1ðoÞ is defined in Eq. (33). Although one cannot directly contrast the results from
the (1,1) Padé approximation with the linear approximation to the FRF, one might venture
that a small (3%) change in natural frequency here corresponds to a gross reduction in
coherence.
In order to do a final validation, the equation of motion (9) was integrated numerically

using a fourth-order Runga–Kutta scheme. The coefficient values were the same as in the
Padé approximation described above. The excitation was a Gaussian white noise sequence with
rms values chosen to correspond to the P values above. This in itself was not trivial as the
Gaussian sequence was filtered into the interval [0,200] Hz in order to ensure correct behaviour
of the Runga–Kutta routine. This lowered the rms from the required value and the final
simulation used a corrected rms to account for this. 190 000 points of data for each case
were taken and the coherence was estimated from a 512-line FFT, this gave 185 averages.
The results are shown in comparison with the analytical results in Fig. 3. It is observed that
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Fig. 1. Coherence from (1,1) Padé approximation for asymmetrical (k2a0) Duffing oscillator: P ¼ 0:005 (solid line),

P ¼ 0:01 (dotted), P ¼ 0:02 (dashed).

Fig. 2. FRF from OðPÞ approximation for asymmetrical (k2a0) Duffing oscillator: P ¼ 0:0 (solid line), P ¼ 0:005
(dotted), P ¼ 0:01 (dashed), P ¼ 0:02 (dot-dash).
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the best correspondence is for P ¼ 0:005 as one might expect. Qualitatively the results are quite
good, although the analytical results appear to underpredict the distortion. There is also an
indication in the numerical results of a dip in coherence at three-times the natural frequency,
which is consistent with excitation of the cubic term at higher values of P. This effect is not
predicted at the ð1; 1Þ level of approximation.
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Fig. 3. Coherence from (1,1) Padé approximation for asymmetrical (k2a0) Duffing oscillator: P ¼ 0:005 (solid line),

P ¼ 0:01 (dotted), P ¼ 0:02 (dashed). Comparison with numerical simulation (lines with circles).
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5. The symmetric oscillator—an approximation of order (2,2)

This section computes the coherence g2ð2;2Þ for the symmetric Duffing oscillator, i.e. that
given by Eq. (9) with k2 ¼ 0: As described in Section 3, the coherence is insensitive
to the nonlinearity at order (1,1) and this is why the higher-order approximation is
necessary. This amounts to calculating the terms A22 and B22 from Eqs. (27) and (28). The
necessary cross-spectra for A22 are from (27), Sy1x; Sy3x and Sy5x: The first of these two
quantities are given above (by setting k2 ¼ 0 for the asymmetric case), and the third was
computed in Ref. [1]; it is

Sy5xðoÞ ¼
9

2
P3k2

3H1ðoÞ
2 1

2c2k2
H1ðoÞ þ

1

k

� �
þ I3ðoÞ

� �
; (40)

where

I3ðoÞ ¼
�ðo2 � 3o2

d � 10ionzo� 27o2
nz

2
Þ

mc2k2
ðo� od � 3ionzÞðoþ od � 3ionzÞðo� 3od � 3ionzÞðoþ 3od � 3ionzÞ

: (41)

The expression for the B22 term in Eq. (28), on using the expression (12) for H3 with k2 ¼ 0;
becomes,

B22ðoÞ ¼
6k2

3P
4

4p2
jHðoÞj2

Z 1

�1

do1 jH1ðo1Þj
2

Z 1

�1

do2 jH1ðo2Þj
2jH1ðo� o1 � o2Þj

2: (42)
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Fig. 4. Coherence from (2,2) Padé approximation for symmetrical (k2 ¼ 0) Duffing oscillator: P ¼ 0:005 (solid line),

P ¼ 0:01 (dotted), P ¼ 0:02 (dashed).
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This is readily evaluated by contour integration (in fact the first integral has already been carried
out for B11). The result is

B22ðoÞ ¼
9k2

3P
4

2m2c2k2
jHðoÞj2I4ðoÞ; (43)

where

I4ðoÞ ¼
o4 þ 2o2o2

d þ 45o4
d þ 54o2o2

nz
2
þ 522o2

do
2
nz

2
þ 1053o4

nz
4

ð½o� od �
2 þ 9o2

nz
2
Þð½oþ od �

2 þ 9o2
nz

2
Þð½o� 3od �

2 þ 9o2
nz

2
Þð½oþ 3od �

2 þ 9o2
nz

2
Þ
: (44)

The (2,2) Padé approximation to the coherence can now be computed using the expression
in (26), the results for P ¼ 0:005; 0.01 and 0.02 are shown in Fig. 4. The size of the distortion is
small compared to the antisymmetric case. A comparison with numerical simulation is made in
Fig. 5, the simulated data being generated in the same way as in the last section. It is seen
that the Volterra approximation considerably underpredicts the coherence distortion, but is
consistent with the fact that the OðP3Þ FRF prediction also underpredicts the frequency shift in
the FRF [1]. The Padé approximation generates the correct features, i.e. is less than unity in
the neighbourhood of the natural frequency and its third harmonic. However, it fails to predict
the shift upwards in these dips which is shown in the numerical results. This is presumably a
higher-order effect.
Again, the dips in the coherence can be attributed to the poles of B22 and the zeroes of A22; in

fact they are explained by the former here as seen from (44).
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Fig. 5. Coherence from (2,2) Padé approximation for symmetrical (k2 ¼ 0) Duffing oscillator: P ¼ 0:005 (solid line),

P ¼ 0:01 (dotted), P ¼ 0:02 (dashed). Comparison with numerical simulation (lines with circles).
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6. Discussion and conclusions

This paper extends the set of structural dynamic observables which can be approximated using
the Volterra functional series. These approximations are valuable because they can give
information about the pole structures of the various quantities which may later be exploited for
identification purposes. The particular observable approximated here is the coherence function for
the sdof asymmetric and symmetric Duffing oscillators. In the asymmetric case (k2a0), the (1,1)
approximation is obtained and shown to give excellent quantitative agreement with the results of
numerical simulation. Specifically, the approximation shows dips in the coherence at low
frequencies and at twice the linear natural frequency. At higher levels of excitation, there is also
distortion evident at the natural frequency itself. What the approximation fails to capture is a dip
at the third harmonic of the natural frequency when the level of excitation takes its higher values.
This is consistent with the order of truncation of the approximation. The level of qualitative
agreement is also fair with the ‘true’ distortions being factors of two or three greater than the
rational approximation. Again, this is consistent with the effects of truncation. For the symmetric
oscillator, the qualitative agreement is also good with the approximate coherence dipping at the
natural frequency and third harmonic. However, in this case the qualitative agreement is less good
with the numerical results showing relatively much greater dips than in the asymmetric case.
Another effect not captured by the (2,2) approximation is the frequency shift upwards in the
coherence dips for the numerical results. Again this appears to be a truncation effect and is
reduced for the lower values of excitation level as one might expect.
These results were obtained in the belief that there is insight to be gained from the analytical

approximations. There is also the possibility that appropriately accurate approximations may be
used to extract information from measured data. This possibility lies somewhat in the future and
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will require some means of extracting higher-order approximations. The authors are pursuing this
with the aim of converting the calculations here from hand calculations with the assistance of
computer algebra to full computer algebraic calculations.
Appendix A. Relations between cross-spectra

Two useful relationships between cross-spectra will be proved here. Although they could
probably be derived faster using the machinery developed in Ref. [9], it is instructive to
derive them from first principles, this also saves explaining the notation and techniques from
Ref. [9].

Lemma. Suppose the sequence yiðtÞ; i ¼ 1; . . . ;1 is the Volterra expansion for a nonlinear system
and that the excitation xðtÞ is a white noise sequence with auto-correlation function fxxðtÞ ¼ PdðtÞ
then if n is odd,

Sy1xðoÞSxyn
ðoÞ ¼ PSy1yn

ðoÞ: (A.1)

Proof. First, consider the term Sy1xðoÞSxyn
ðoÞ:

Taking the inverse Fourier transform (with time variable t)gives

F�1½Sy1xðoÞSxyn
ðoÞ� ¼ fy1xðtÞ � fxyn

ðtÞ ¼
Z 1

�1

dt0 fy1xðt
0Þfxyn

ðt� t0Þ ðA:2Þ

¼

Z 1

�1

dt0 E½y1ðtÞxðt þ t0Þ�E½xðt0Þynðt
0 þ t� t0Þ�

¼

Z 1

�1

dt0 E½y1ðtÞxðt þ t0Þ�E½ynðt
0Þxðt0 � tþ t0Þ� ðA:3Þ

after using stationarity of the signals.
Substituting for the Volterra operators givesZ 1

�1

dt0 E
Z 1

�1

dt1 h1ðt1Þxðt � t1Þxðt þ t0Þ

 �

�E

Z 1

�1


 
 


Z 1

�1

dZ1 . . .dZn hnðZ1; . . . ; ZnÞxðt
0 � Z1Þ . . . xðt0 � ZnÞxðt

0 þ t0 � tÞ

 �

: ðA:4Þ

Combining the terms and using the well-known decomposition of the expectation of a product of
Gaussians into pair-wise expectations [4] gives

m1n

Z 1

�1

dt0
Z 1

�1

dt1 h1ðt1Þ
Z 1

�1


 
 


Z 1

�1

dZ1 . . .dZn hnðZ1; . . . ; ZnÞ

�E½xðt � t1Þxðt þ tÞ�E½xðt0 � Z1Þxðt
0 � Z2Þ� 
 
 


E½xðt0 � Zn�2Þxðt
0 � Zn�1Þ�E½xðt0 � ZnÞxðt

0 þ t0 � tÞ�; ðA:5Þ

where the term m1n counts the number of allowed permutations of the expectations. There is
only one way to form the first expectation and there are clearly n ways to form the last. The case
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of the intermediate ðn � 1Þ=2 terms is more complicated, but a little thought shows that there are
ðn � 1Þ!=ð2ðn�1Þ=2ððn � 1Þ=2Þ!Þ ways of arranging them. The end result is

m1n ¼
n!

2
n�1
2 n�1

2

� 
!
: (A.6)

Note that (A.5) depends critically on the symmetry of hn under the interchange of any two
symbols. The pair-wise expectations in (A.5) are simply autocorrelation functions of the input, so
the integral becomes

m1n

Z 1

�1

dt0
Z 1

�1

dt1 h1ðt1Þ
Z 1

�1

. . .

Z 1

�1

dZ1 . . . dZn hnðZ1; . . . ; ZnÞ

�fxxðt
0 þ t1ÞfxxðZ1 � Z2Þ 
 
 
fxxðZn�2 � Zn�1ÞfxxðZn þ t0 � tÞ: ðA:7Þ

But Gaussian inputs have been assumed with fxxðtÞ ¼ PdðtÞ; so the expression reduces to

m1nP
nþ3
2

Z 1

�1

dt0
Z 1

�1

dt1 h1ðt1Þ
Z 1

�1

. . .

Z 1

�1

dZ1 . . .dZn hnðZ1; . . . ; ZnÞ

�dðt0 þ t1ÞdðZ1 � Z2Þ . . . dðZn�2 � Zn�1ÞdðZn þ t0 � tÞ: ðA:8Þ

Arbitrarily choosing to project out the Z variables with even indices yields

m1nP
nþ3
2

Z 1

�1

dt0
Z 1

�1

. . .

Z 1

�1

dZ1 . . .dZn�2 h1ð�t0ÞhnðZ1; Z1; . . . Zn�2; Zn�2; t� t0Þ; (A.9)

where the overline indicates that only Zs with odd indices are included in the product.
Finally, changing t0�!� t0 gives

F�1½Sy1xðoÞSxyn
ðoÞ�

¼ m1nP
nþ3
2

Z 1

�1

dt0
Z 1

�1

. . .

Z 1

�1

dZ1 . . .dZn�2 h1ðt0ÞhnðZ1; Z1; . . . Zn�2; Zn�2; tþ t0Þ: ðA:10Þ

Now, consider,

F�1½Sy1yn
ðoÞSxxðoÞ� ¼ PF�1½Sy1yn

ðoÞ� ¼ Pfy1yn
ðtÞ: (A.11)

Considered as an expectation, this is simply

E½y1ðt � tÞynðtÞ� (A.12)

and in terms of Volterra kernels this is

E

Z 1

�1

dt1 h1ðt1Þxðt � t� t1Þ



�

Z 1

�1

. . .

Z 1

�1

dZ1 . . . dZn hnðZ1; . . . ; ZnÞxðt � Z1Þ . . . xðt � ZnÞ

�
: ðA:13Þ

As before this is decomposed into pair-wise expectations,

m1n

Z 1

�1

dt1 h1ðt1Þ
Z 1

�1

. . .

Z 1

�1

dZ1 . . .dZn hnðZ1; . . . ; ZnÞ

�E½xðt � t0 � t1Þxðt � Z1Þ�E½xðt � Z2Þxðt � Z3Þ� 
 
 
E½xðt � Zn�1Þxðt � ZnÞ� ðA:14Þ
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and this is

m1n

Z 1

�1

dt1 h1ðt1Þ
Z 1

�1

. . .

Z 1

�1

dZ1 . . .dZn hnðZ1; . . . ; ZnÞ

�fxxðt1 þ t0 � Z1ÞfxxðZ2 � Z3Þ . . .fxxðZn�1 � ZnÞ ðA:15Þ

but because x is white-Gaussian, this is

m1nPðnþ3Þ=2

Z 1

�1

dt1 h1ðt1Þ
Z 1

�1

. . .

Z 1

�1

dZ1 . . .dZn hnðZ1; . . . ; ZnÞ

�dðt1 þ t0 � Z1ÞdðZ2 � Z3Þ . . . dðZn�1 � ZnÞ: ðA:16Þ

Projecting out the odd variables using the delta functions leads to the expression,

m1nPðnþ3Þ=2

Z 1

�1

dt1

Z 1

�1

. . .

Z 1

�1

dZ2 . . .dZn�1h1ðt1Þhnðt1 þ t; Z2; Z2; . . . Zn�1; Zn�1Þ; (A.17)

where the overline omits the odd indexed variables now.
Using the symmetry properties of hn under any permutations of indices and making a trivial

relabelling of the integration variables leads to the same expression as in (A.10) and this
establishes that

F�1½Sy1xðoÞSxyn
ðoÞ� ¼ Pfy1yn

ðtÞ (A.18)

so that taking the Fourier transform establishes the desired result. The relation can
obviously also be proved by computing Sy1yn

and showing that it factorises into terms of the
form (A.1).

The next result of use is:

Lemma. Under the same conditions as the previous lemma,

PSy3yn
ðoÞ ¼ Sy3xðoÞSxyn

ðoÞ þ
q3nP

nþ5
2

ð2pÞ
nþ1
2

Z 1

�1

Z 1

�1

do1do2

Z 1

�1


 
 


Z 1

�1

dZ4 . . . dZn�1

�H3ðo1;o2;�o� o1 � o2ÞH3ð�o1;�o2;oþ o1

þ o2; Z4;�Z4; . . . ; Zn�1;�Zn�1Þ: ðA:19Þ

Proof. First consider the term Sy3xðoÞSxyn
ðoÞ: The manipulations needed are very similar to those

in the first lemma. First, take the inverse Fourier transform and convert to the correlation,

F�1½Sy3xðoÞSxyn
ðoÞ� ¼

Z 1

�1

dt0 fy3xðt
0Þfxyn

ðt� t0Þ: (A.20)
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After replacing the correlations by the appropriate expectations and substituting the Volterra
operators for y3 and yn; one obtains

m3n

Z 1

�1

dt0
Z 1

�1

Z 1

�1

Z 1

�1

dt1 dt2 dt2

Z 1

�1


 
 


Z 1

�1

dZ1 . . .dZn h2ðt1; t2; t3ÞhnðZ1; . . . ; ZnÞ

�E½xðt � t1Þxðt � t2Þ�E½xðt � t3Þxðt þ t0Þ�

�E½xðt0 � Z1Þxðt
0 � Z2Þ� . . .E½xðt0 � Zn�2Þxðt

0 � Zn�1Þ�

�E½xðt0 � ZnÞxðt
0 � tþ t0Þ�; ðA:21Þ

where the number of ways of combining the arguments of the expectations is

m3n ¼
3n!

2
n�1
2ð Þ n�1

2

� 
!
: (A.22)

Substituting the correlation function for Gaussian noise, gives the final result,

m3nPð5þnÞ=2

Z 1

�1

Z 1

�1

dt1 dt3

Z 1

�1

. . .

Z 1

�1

dZ1 . . .dZn�2 hðt1; t1; t3Þ

�hðZ1; Z1; . . . ; Zn�2; Zn�2; tþ t3Þ: ðA:23Þ

Next consider,

F�1½Sy3yn
ðoÞSxxðoÞ� ¼

Z 1

�1

dt0 fy3yn
ðt0Þfxxðt� t0Þ: (A.24)

After substituting for the fs and introducing the Volterra operators, the resulting integral
contains the product of expectations,

E½xðt � t1Þ . . . xðt � t3Þxðt þ t0 � Z1Þ . . . xðt þ t� ZnÞ�

�E½xðt0Þxðt0 þ tþ t0Þ� ðA:25Þ

This leads to two distinct pairwise products of expectations. In the first, the t variables are
grouped together thus, E½xðt � t1Þxðt � t2Þ�E½xðt � t3Þxðt þ t0 � ZiÞ� . . . and this leads eventually
to an integral identical to (A.23). In the second grouping, the t variables are all paired up with Z
variables leading to E½xðt � t1Þxðt þ t0 � ZiÞ�E½xðt � t2Þxðt þ t0 � ZjÞ�E½xðt � t3Þxðt þ t0 � ZkÞ� . . .
This leads to a final integral,

I3n ¼ q3n

Z 1

�1


 
 


Z 1

�1

dZ1 dZ2 dZ3 dZ4 . . .dZn�1

�h3ðZ1 � t; Z2 � t; Z3 � tÞhnðZ1; Z2; Z3; Z4; Z4; . . . ; Zn�1Zn�1Þ; ðA:26Þ
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where

q3n ¼
6ðn � 3Þ!

2ððn�3Þ=2Þðn�32 Þ!
: (A.27)

Now taking the Fourier transform of the integrals obtained so far gives

Sy3xðoÞSxyn
ðoÞ ¼ PSy3yn

ðoÞ þF½I3n� (A.28)

and in order to establish the required result, one has simply to evaluate the Fourier transform of
(A.26).

First, take the multidimensional FT of (A.26) and replace each of the hj with their FT (see
Eq. (A.3) in the main body of the paper).

F½I3n�

¼ q3nPð5þnÞ=2

Z 1

�1

dt e�iot
Z 1

�1

Z 1

�1

Z 1

�1

dZ1 dZ2 dZ3

Z 1

�1

. . .

Z 1

�1

dZ4 . . . dZn�1

�
1

ð2pÞ3

Z 1

�1

Z 1

�1

Z 1

�1

do1 do2 do3H3ðo1;o2;o3Þe
i½o1ðZ1�tÞþo2ðZ2�tÞþo3ðZ3�tÞ�

�
1

ð2pÞn

Z 1

�1

. . .

Z 1

�1

da1 . . . dan Hnða1; . . . ; anÞe
i½a1Z1þa2Z2þa3Z3þða4þa5ÞZ4þ


þðan�1þanÞZn�:

ðA:29Þ

First, one integrates out the variables Z4 to Zn�1: This is accomplished by collecting the
factors

1

2p

Z 1

�1

dZie
iðaiþaiþ1ÞZi ¼ dðai þ aiþ1Þ: (A.30)

and using the projection property of the delta functions. This gives

q3n

P
5þn
2

ð2pÞ
nþ3
2

Z 1

�1

. . .

Z 1

�1

dtdo1 do2 do3 da1 da2 da3 da4 . . .dan�1

�H3ðo1;o2;o3ÞHnða1; a2; a3; a4;�a4; . . . ; an�1;�an�1Þ

�
1

2p

Z 1

�1

dZ1 e
iZ1ðo1þa1Þ

� �
1

2p

Z 1

�1

dZ2 e
iZ2ðo2þa2Þ

� �

�
1

2p

Z 1

�1

dZ3 e
iZ3ðo3þa3Þ

� �
e�itðoþo1þo2þo3Þ

ðA:31Þ



ARTICLE IN PRESS

K. Worden, G. Manson / Journal of Sound and Vibration 286 (2005) 529–547 547
after a little rearrangement. Now, the bracketed quantities in the last equation are delta functions
dðoi þ aiÞ and can be used to project out the first three as, yielding

q3n

Pð5þnÞ=2

ð2pÞðnþ3Þ=2

Z 1

�1

. . .

Z 1

�1

do1 do2 do3 da4 . . . dan�1

�H3ðo1;o2;o3ÞHnð�o1;�o2;�o3; a4;�a4; . . . ; an�1;�an�1Þ

�
1

2p

Z 1

�1

dt eitðoþo1þo2þo3Þ

� �
ðA:32Þ

and the bracketed quantity is again a delta function dðoþ o1 þ o2 þ o2Þ: If this is used to project
out t; the required result follows.
A specific result used in the main body of this paper is obtained by setting n ¼ 3 in the lemma.

This gives

PSy3y3 ¼ jSy3xj
2 þ

6P4

ð2pÞ2

Z 1

�1

Z 1

�1

do1 do2jH3ðo1;o1;�o� o1 � o2Þj
2 (A.33)

and from this it follows that:

PSy3y34jSy3xj
2: (A.34)
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